- · ориентация на индивидуальные модельные характеристики соревновательной деятельности и подготовленности известных фигуристов, соответствующую систему подбора средств педагогического воздействия, контроля и коррекции тренировочного процесса;
- расширение нетрадиционных средств подготовки: использование приборов, позволяющих полнее раскрыть функциональные возможности организма фигуриста; применение различных методических приемов, например, включение в тренировочный процесс занятий по интеллектуальной подготовке, способствующих обучению технике отдельных элементов и разучиванию соревновательных программ в начале их постановки;
- · динамичность системы подготовки и ее коррекция в случае изменения правил соревнований по фигурному катанию, введение различных дополнений ИСУ, расширения календаря, изменения значимости соревнований и др.;
- \cdot учет географических и климатических условий мест, в которых планируется проведение главных соревнований в системе подготовки фигуристов.

Литература

- 1. Абсалямова И.В., Богданова Е.В. Фигурное катание. /Комментарии к судейству/ .— М.: Физкультура и спорт.— 1981.— 142 с.
- 2. Воробьев М.И., Медведева И.М. Фигурное катание на коньках.— К.: Рад. шк., 1990.— 64 с.
- 3. Гандельсман А.Б. Фигурное катание на коньках.— М.: Физкультура и спорт, 1972.— 182 с.
- 4. Гришина М.В. Подготовка фигуристов: основы управления.— М.: Физкультура и спорт, 1986.— 142 с.
- 5. Матвеев Л.П. Основы общей теории спорта и системы подготовки спортсменов.— К.: Олимпийская литература, 1999.— 320 с.
- 6. Медведева И.М. Фигурное катание на коньках.— К.: Олимпийская литература, 1997.— 224 с.
- 7. Москвина Т.Н. Короткая программа парного катания.— М.: Физкультура и спорт, 1980.— 111 с.
- 8. Платонов В.Н. Общая теория подготовки спортсменов в олимпийском спорте.— К.: Олимпийская литература, 1997.— 583 с.
- 9. Рыжкин В.И. Ледовая сюита.— М.: Физкультура и спорт, 1975.— 195 с.
- 10. Фигурное катание на коньках / Под общ. ред. А.Н. Мишина.— М.: Физкультура и спорт, 1985.— 268 с.

ВОЗДЕЙСТВИЕ СРЕДСТВ ГРАВИТАЦИОННОЙ ТРЕНИРОВКИ НА КООРДИНАЦИОННУЮ СТРУКТУРУ ВЫПОЛНЕНИЯ БЛОКИРОВАНИЯ ВОЛЕЙБОЛИСТАМИ РАЗЛИЧНОГО ВОЗРАСТА Носко Н.А.

Черниговский государственный педагогический

университет имени Т.Г.Шевченко
Основным средством защиты от нападающих ударов является бло-

основным средством защиты от нападающих ударов является олокирование. Технически грамотное и тактически умелое применение одиночного и группового блокирования обеспечивает команде надежную оборону. Поэтому команды с хорошим блоком имели большие возможности, а значит и преимущество перед противником для осуществления всевозможных тактических комбинаций [1,2].

Нами выполнялись исследования с волейболистами различных возрастных групп в тренировочном процессе, как в естественных условиях, а также под воздействием средств гравитационной тренировки [3,4,5].

Для более объективного определения воздействия средств гравитационной тренировки, в частности, гипергравитационного костюма на координационную структуру движений волейболистов была проведена специальная серия исследований с использованием метода стабилографии. С этой целью у спортсменов всех изучаемых возрастных групп исследовались частотно-амплитудные характеристики колебаний тела спортсменов, находящихся в вертикальной позе при выполнении блокирования (таблица 1).

В результате исследований было установлено, что у волейболистов которые были распределены по возрастным группам (юноши, юниоры, молодежь и мужчины), при выполнении блокирования в гипергравитационном костюме наблюдались достоверные изменения (P < 0.05 - 0.01) изучаемых стабилографических характеристик, в частности, у юношей — в фронтальной плоскости: средней амплитудной характеристики $A_{cp,(y)}$ и общего времени выполнения двигательного действия $t_{(y)}$, у юниоров — в сагиттальной плоскости — средней амплитудной и средней частотной характеристик $A_{cp,(x)}$, $F_{cp,(x)}$, а также общего времени выполнения $t_{(x)}$. Достоверными изменениями характеризовалась общая средняя амплитудная составляющая A_{cp} .

В молодежной группе наиболее выраженные изменения наблюдались в сагиттальной плоскости — $A_{_{\text{CD},(x)}}$; в фронтальной плоскости — средняя частотная

характеристика F

В мужской группе все стабилографические характеристики при использовании гипергравитационного костюма недостоверно отличались от таких же характеристик этой группы спортсменов, выполнявших изучаемые действия в обычных условиях.

Процентный вклад воздействий увеличения грвитационных взаимодействий на стабилографические характеристики динамической устойчивости тела волейболистов при выполнении блокирования был заметен как по увеличению, так и по снижению измеряемых показателей.

В условиях динамической устойчивости у волейболистов различного возраста при выполнении блокирования под влиянием средств гипергравитации в координационной структуре действий наблюдалось определенное процентное увеличение стабилографических характеристик в сагиттальной и фронтальной плоскостях.

Так, в частности, $A_{_{cp,(x)}}$ увеличивалось от 17,16% до 40,4%; $f_{_{cp,(x)}}-$ от - 20,86 до –56,08% .

В юношеской, юниорской и мужской группах максимальная амплитуда колебаний ОЦМ тела волейболистов $A_{\max(x)}$ уменьшились от 2,34 до 35,08%, в молодежной группе спортсменов этот показатель увеличился на 7,43%; $t_{(x)}$ – от 9,7 до 113,59%. В молодежной группе наблюдался также отрицательный прирост показателей $A_{\text{ср.}(y)}$ на -9,71%. В юношеской, юниорской и мужской группах отмечался положительный прирост этого же показателя от 26,2 до 98,44%; уменьшение прироста $f_{\text{ср.}(y)}$ от 28,49 до 71,64%. А $_{\max(y)}$ в юношеской группе увеличивалась на 5,94%, в мужской на 33,87%, во всех остальных группах по этим показателям был заметен отрицательный прирост от 14,08 до 28,49%; $t_{(y)}$ –

Таблица 1 Сравнительный анализ воздействия средств гипергравитации на координационную структуру динамической устойчивости тела волейболистов различных возрастных групп при выполнении блокирования

№	D	Обозна-	-	Блокирование			
	Возрастн ые	чение	Ед.	В естестве-	В условиях		Прирост
n/	-	харак-	изм.	нных	гипергра-	P	
n	группы	терис-тик		условиях	витации		(%)
1.	Юноши	$A_{cp.(x)}$	MM	13.4±4.61	15.7±2.49	>0,05	+17.16
		$f_{cp.(x)}$	Гц	7.33±3.20	4.93±0.49	>0,05	-32.74
		$A_{\max(x)}$	MM	143.0±64.9	115.0±9.97	>0,05	-19.58
		t _(x)	c	0.164±0.07	0.237±0.03	>0,05	+44.51
		$A_{cp.(y)}$	MM	12.8±7.05	25.4±4.44	< 0,05	+98.44
		$f_{cp,(y)}$	Гц	9.18±5.5	3.48±0.656	>0,05	62.09
		$A_{max(y)}$	MM	101.0±26.0	107.0±13.1	>0,05	+5.94
		t(y)	c	0.144 ± 0.07	0.35 ± 0.03	< 0,01	+143.05
		$f_{co.}$	Гц	8.25±4.21	4.31±0.92	>0,05	-47.75
		A _{cp.}	MM	179.0±61.6	143.0±87.0	>0,05	-20.11
2.	Юниоры	$A_{cp.(x)}$	MM	12.9±2.84	15.4±3.06	< 0,01	+19.38
		$f_{cp.(x)}$	Гц	12.0±3.15	5.27±0.813	<0,05	-56.08
		$A_{max(x)}$	MM	171.0±33.5	111.0±8.85	>0,05	-35.08
		$t_{(x)}$	c	0.103±0.01	0.220±0.01	< 0,01	+113.59
		$A_{cp,(y)}$	MM	16.0±1.9	22.7±5.02	>0,05	+41.87
		$f_{cp.(v)}$	Гц	15.2±1.41	4.31±0.878	>0,05	-71.64
		$A_{max(y)}$	MM	142.0±46.2	122.0±21.04	>0,05	-14.08
		t(y)	c	0.096±0.03	0.263±0.05	>0,05	+173.95
		$f_{cp.}$	Гц	13.8±4.14	4.63±0.53	>0,05	-66.45
		A_{cn}	MM	232.0±25.2	161.0±20.2	< 0,05	-30.6
3.	Молодежь	$A_{cp.(x)}$	MM	13.6±2.04	17.8±2.31	<0,05	+30.88
		$f_{cp.(x)}$	Гц	14.5±1.06	10.4±1.23	>0,05	-28.27
		$A_{max(x)}$	MM	148.0±61.1	159.0±12.4	>0,05	+7.43
		$t_{(x)}$	c	0.15±0.102	0.207±0.09	>0,05	+38.0
		$A_{cp,(y)}$	MM	20.6±6.9	18.6±1.07	>0,05	-9.71
		$f_{cp,(y)}$	Гц	17.0±0.87	4.7±0.68	< 0,05	-72.35
		$A_{max(y)}$	MM	137.0±48.8	112.0±16.5	>0,05	-18.25
		t(y)	c	0.162±0.03	0.220±0.08	>0,05	+35.8
		$f_{cp.}$	Гц	15.7±0.94	15.3±0.68	>0,05	-2.55
		A _{cp.}	MM	162.0±45.2	141.0±26.9	>0,05	-12.96
4.	Мужчины	$A_{cp.(x)}$	MM	15.1±4.91	21.2±2.29	>0,05	+40.4
		$f_{cp.(x)}$	Гц	13.9±1.94	11.0±2.24	>0,05	-20.86
		$A_{max(x)}$	MM	256.0±19.84	250.0±19.9	>0,05	-2.34
		t _(x)	С	0.134±0.03	0.147±0.03	>0,05	+9.7
		A _{cp.(y)}	MM	18.7±3.23	23.6±3.76	>0,05	+26.2
		f _{cp.(y)}	Гц	17.2±1.99	12.3±1.32	>0,05	-28.49
		$A_{\max(y)}$	MM	186.0±20.1	249.0±26.0	>0,05	+33.87
		t(y)	c	0.141±0.03	0.177±0.04	>0,05	+25.54
		f _{cp.}	Гц	15.5±1.67	11.4±1.79	>0,05	-26.45
		A _{cp.}	MM	323.0±25.1	363.0±25.4	>0,05	+12.38

увеличилось в диапазоне от 25,54 до 173,95%; $f_{\rm cp.}$ снижалась в среднем от 2,55 до 66,45%; $A_{\rm cp.}$ – в юношеской, юниорской и молодежных группах – уменьшилась в процентном диапазоне от 12,96 до 30,6%.

Как свидетельствуют результаты проведенных экспериментальных исследований, при выполнении блокирования волейболистами различных возрастных групп в условиях использования средств гипергравитации у них наблюдалось уменьшение частотных характеристик взаимодействия тела, что

позволяет сделать вывод о снижении при этом их динамической устойчивости. Это подтверждает гипотезу о том, что такие средства оказывают в равных условиях значительно большую специальную силовую нагрузку на скелетную мускулатуру спортсменов.

Литература

- 1. Ивойлов А.В. Тактическая подготовка волейболистов. М.: Физкультура и спорт, 1958.- С.32.
- Демчишин А.П., Пилипак Б.С. Підготовка волейболістів. К.: "Здоров'я" 1979. С. 45-47.
- Носко Н.А. Определение воздействий средств гравитационной тренировки на технику выполнения основных технических действий в волейболе. // Педагогіка, психологія та медико-біологічні проблеми фізичного виховання і спорту. Харків. 2000. – №1. – C.35-38.
- 4. Лапутин А.Н. Гравитационная тренировка. К.: Знання, 1999. 315 с.
- Носко Н.А. Теоретические обоснования использования средств гравитационных взаимодействий тела спортсмена в тренировочном процессе. // Педагогіка, психологія та медико-біологічні проблеми фізичного виховання і спорту. Харків. 2000. - №5, С.23- 28.

ЗАВИСИМОСТЬ ТОЧНОСТИ СТРЕЛЬБЫ ОТ МОРФО-ФУНКЦИОНАЛЬНЫХ ПОКАЗАТЕЛЕЙ БИАТЛОНИСТОВ

Мулик В.В.

Харьковский государственный институт физической культуры

Стрельба в биатлоне существенно отличается от спортивно- пулевой стрельбы лежа и стоя. Различия в них и экипировка спортсменов, и условия стрельбы на огневом рубеже, и дистанция стрельбы. Однако главное отличие состоит в том, что стрельба в биатлоне ведется сразу после интенсивной гонки при напряженной работе сердечно - сосудистой и дыхательной систем организма. Немаловажна и необходимость быстро психологически переключаться с одного вида деятельности на другой, притом принципиально отличающегося от предыдущего [1,3,4].

В связи с этим важно учитывать значимость различных факторов непосредственно влияющих на качество стрельбы в биатлоне.

Поэтому, цель нашего исследования - определить влияние морфоантропометрических показателей и состояния нервно - мышечного аппарата у квалифицированных биатлонистов на результаты стрельбы.

Для решения данной цели использовались измерения параметров частей тела, становая и кистевая динамометрия, треморография, анализ и сопоставление результатов стрельбы с исследуемыми показателями определяющими сложнокоординационную структуру движений биатлонистов.

Полученные результаты были подвергнуты корреляционному анализу. В качестве основных морфо-функциональных показателей, которые существенно или опосредственно влияют на результаты стрельбы, нами взяты индивидуальные их параметры.

Проведена ранговая корреляция исследуемых показателей с точностью стрельбы, которые представлены в таблице 1, Как мы видим, отмечена тесная корреляционная связь между точностью стрельбы и длиной предплечья, особенно в стрельбе лежа / коэффициент /r= 0,73 /. Это объясняется тем, что