
Citation: Tkachuk, N.; Zelena, L.

Mechanisms of Biodeterioration of

Structural Materials by Streptomyces

spp.: A Review. Eng. Proc. 2024, 67,

12. https://doi.org/10.3390/

engproc2024067012

Academic Editor: Juan Francisco

García Martín

Published: 14 August 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Proceeding Paper

Mechanisms of Biodeterioration of Structural Materials by
Streptomyces spp.: A Review †

Nataliia Tkachuk 1,* and Liubov Zelena 2,3

1 Department of Biology, T.H. Shevchenko National University “Chernihiv Colehium”,
14013 Chernihiv, Ukraine

2 Department of Virus Reproduction of the Danylo Zabolotny Institute of Microbiology and Virology,
NAS of Ukraine, 03680 Kyiv, Ukraine; zelenalyubov@gmail.com

3 Department of Biotechnology, Leather and Fur of the Kyiv National University of Technologies and Design,
01011 Kyiv, Ukraine

* Correspondence: n.tkachuk@chnpu.edu.ua; Tel.: +380-66-173-02-60
† Presented at the 3rd International Electronic Conference on Processes—Green and Sustainable Process

Engineering and Process Systems Engineering (ECP 2024), 29–31 May 2024; Available online:
https://ecp2024.sciforum.net/.

Abstract: The processes of microbial damage to materials lead to a number of environmental problems.
To prevent the development of eco-trophic corrosively active groups of micro-organisms, “green”
biocides/inhibitors are being developed. Actinobacteria of the genus Streptomyces are actively studied
from the point of view of usefulness/harmfulness in relation to human activity, in particular, in the
processes of microbial damage to materials. To summarize the results of available scientific research
and reviews devoted to the participation and supposed mechanisms of structural materials damage
caused by streptomycetes, the presented study was performed. The possible role of streptomycetes
in the biodeterioration of structural materials was speculated. The obtained data indicate the need
for further studies on streptomycetes as participants in the corrosion process, with special attention
to their production of secondary metabolites and nanoparticles of metal and metal oxides with
antimicrobial and inhibitory properties, which will contribute to the expansion of the list of “green”
biocides/inhibitors.

Keywords: Actinobacteria; construction materials; “green” biocides/inhibitors; mechanisms of biode-
terioration; Streptomyces

1. Introduction

The processes of the biodegradation of materials, harmful from the point of view
of practical human activity, are considered through their biodamage, which should be
prevented and eliminated. Material deterioration leads to a number of environmental
problems [1]. Biocides/inhibitors used to protect against corrosion, including microbial
corrosion, are often toxic compounds [2,3]. Eco-friendly “green” biocides/inhibitors are
being developed today based on the requirements of ensuring the preservation of the
quality of the environment [3–5]. It is known that representatives of the genus Streptomyces
play an active part in the destruction of materials: wall paintings suffer from the growth
and colonization of Streptomyces [6,7], the biodegradation of rubber latex occurs with the
participation of Streptomyces labedae isolated from the soil [8], and streptomycetes have been
isolated from damaged film and oil-bitumen coatings of gas pipelines and underground
tanks [9,10]. At the same time, sulfate-reducing and thione bacteria are considered the main
corrosively active groups of micro-organisms [10–12]. Streptomycetes are considered as
heterotrophic bacteria companions of the main groups of material damagers [13].

A study of the diversity, richness, and composition of microbial communities on a
steel surface in marine conditions showed that Proteobacteria accounted for 83.1% of the

Eng. Proc. 2024, 67, 12. https://doi.org/10.3390/engproc2024067012 https://www.mdpi.com/journal/engproc

https://doi.org/10.3390/engproc2024067012
https://doi.org/10.3390/engproc2024067012
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/engproc
https://www.mdpi.com
https://orcid.org/0000-0002-5115-7716
https://orcid.org/0000-0002-5148-1030
https://ecp2024.sciforum.net/
https://doi.org/10.3390/engproc2024067012
https://www.mdpi.com/journal/engproc
https://www.mdpi.com/article/10.3390/engproc2024067012?type=check_update&version=1


Eng. Proc. 2024, 67, 12 2 of 11

total, Firmicutes was 6.3%, Actinobacteria was 3.2%, and Bacteroidetes was 2.8% [14]. In soils,
Streptomyces is the most common genus of Actinobacteria—consisting of almost 70% of the
total [15].

Mechanisms of microbiologically influenced corrosion (MIC) proposed by researchers,
related to SRB activity and developed for anaerobic environments, are reviewed and
improved [16]. Currently, the most likely mechanisms of MIC comprises several theo-
ries [16]: 1. theory of cathodic depolarization; 2. theory of sulfides; 3. theory of uptake
electrons (in particular, redox mediators) by micro-organisms; and 4. the participation
of micro-organisms in the formation of the mineralogical composition of biofilms on the
materials’ surfaces.

Furthermore, there is also the mechanism proposed by Moura et al. [17], who observed
the acid produced by bacteria and their formation of corrosive media. Streptomyces is also
able to oxidize sulfur compounds and produce sulfuric acid [18].

Moreover, streptomycetes are also well-known for properties such as the production
of enzymes, antibiotics, and other metabolites with biological activity [19–22] which are
suggested to produce “green” corrosion inhibitors [23–25] and are used for biocontrol in
agricultural technologies [26,27]. Synthesizing various enzymes, representatives of this
genus can be used for biotransformation processes [28].

Parthipan et al. [29] suggested that a detailed analysis and understanding of microbial
communities involved in the biocorrosion processes of steel is required with particular
attention to the features and properties of bacteria of the family Streptomycetaceae.

To summarize results of available scientific research and reviews devoted to the
participation and supposed mechanisms of structural materials biodamage, caused by
streptomycetes, the presented study was performed. Here, we present a concise review of
published information on the ability of streptomycetes to develop a biofilm, as a compo-
nent of microbial association and as a pure bacterial culture, and their involvement in the
corrosive process, induction, and possible MIC prevention. We consider streptomycetes,
well-known metabolite producers, as biocides/inhibitors, and suggest using their sec-
ondary metabolites for this purpose. Finally, we discuss challenges and potential directions
for future research and present a general outline of the involvement of Streptomyces spp. in
MIC processes.

2. Streptomycetes and Biofilm

Streptomycetes are aerobic, gram-positive, acid–alcohol-labile bacteria that form a
widely branched substrate mycelium that rarely fragments and belongs to the phylum
Actinobacteria. Mature aerial mycelium forms chains of three to many spores. Members of
several species bear short chains of spores on the substrate mycelium. The configuration of
spore chains (or sporophores) has played a very important role in species descriptions for
many years [30]. Phenotyping methods are widely used in their identification [31]. At the
same time, the identification of representatives of the genus Streptomyces is problematic,
since identical 16S rRNA sequences have been established in species where the strains
differ in phenotype, morphology, and biochemistry [32]. The researchers note that the best
available method for identifying Streptomyces species is whole-genome sequencing [33].

Streptomycetes are part of the soil microbiome [34], playing a significant role in soil
properties and fertility. Soil microbiomes cause material deterioration through biofilm
formation [35,36], including the microbiologically influenced corrosion of metals [10,37].
Actinobacteria (including Streptomyces spp.) are one of the bacterial groups that has the
ability form a biofilm [38,39]. The cycle of biofilm development is believed to include [40]:
1. Initial attachment of microbes to a surface or to each other—most often, micro-organisms
exist as free-floating masses or single (eg., planktonic) colonies. However, under normal
conditions, most micro-organisms tend to attach to the surface and eventually form a
biofilm; 2. Formation of microcolonies—as bacteria multiply, they stick more firmly to
the surface, differentiate, and exchange genes, which ensures their survival; 3. Biofilm
maturation—once firmly attached, the bacteria begin to form an exopolysaccharide sur-
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rounding matrix known as extracellular polymeric substance. This is a protective matrix
or “slime”. Small colonies of bacteria then form an initial biofilm; 4. Dispersal (spread) of
the biofilm.

It was suggested that streptomycetes, as representatives of Actinobacteria, can partici-
pate in MIC-forming biofilm. The formation of a biofilm by Streptomyces parvus (S. parvus)
strain B7 is considered due to its involvement in the corrosion of steels [41]. Volkland
et al. [42] showed that in the presence of Streptomyces pilosus (S. pilosus) strain DSM 40714
(which does not form a biofilm) and phosphates, the corrosion rate reduction in mild steel
37/AISI 10-18 in mineral media does not occur.

On the other hand, an approach using bacterial biofilms to combat corrosion is being
developed [43]. The absence of the ability to inhibit the corrosion process of steel (SAE
1018) has been defined for Streptomyces lividans (S. lividans) strain TK24, which does not
form a biofilm [44]. As a conclusion, the authors note that corrosion inhibition is due to
the living cells of the biofilm. S. lividans strain TK23.1, having poor biofilm formation,
showed the same degree of MIC of steel SAE 1018 as in the control without bacteria [45].
Bleich et al. [46] noted that thiocillin (an antibiotic belonging to the group of thiopeptides)
promotes the growth of the matrix-producing B. subtilis population on the plastic of mi-
croplates. Therefore, thiazolyl peptides (thiopeptides) deserve attention as stimulators
of biofilm formation. Since S. gardneri is known to produce thiazolyl peptides (thiopep-
tides) [47], attention should be paid to studying the participation of this species in MIC.
However, for S. gardneri strain ChNPU F3, antagonistic and antibiofilm properties were
shown against Bacillus simplex strain ChNPU F1 [48]. At the same time, the specified
strains are moderately adhesive in terms of their ability to form a biofilm [49]. The authors
hypothesize their involvement in material damage by producing corrosion/anticorrosion
metabolites, but not by biofilm formation.

Information on the formation of biofilms by streptomycetes and their involvement in
MIC processes is presented in Table 1.

Table 1. Biofilm-forming ability of streptomycetes and MIC processes.

Species Biofilm-Forming Ability
Secondary Metabolites with

Antimicrobial Activity/
Antagonistic Activity

Corrosive
Activity References

S. parvus strain B7 powerful not specified yes [41]

S. pilosus strain DSM40714 poor not specified yes [42]

S. lividans strain TK24 poor not specified yes [44]

S. lividans strain TK23.1 poor not specified yes [45]

S. gardneri strain ChNPU F3 poor yes not specified [48,49]

The involvement of streptomycetes in MIC processes is not necessarily connected with
their ability to form and develop biofilm; there are other mechanisms that are responsible
for MIC.

3. Corrosive Activity of Streptomycetes
3.1. Production of Corrosive Compounds and Biodegradation of Corrosion Inhibitors by Streptomycetes

The production of corrosively active metabolites by micro-organisms is one of the
mechanisms of their participation in MIC processes [17,50,51]. Streptomycetes are also
producers of such compounds.

In particular, streptomycetes are well-known soil ammonifiers [52]. Researchers note
that ammonifying bacteria participate in MIC at the beginning of biofilm formation and are
able to form ammonia—a corrosively active metabolite [10]. In particular, the ammonifying
ability was noted for streptomycetes Streptomyces gardneri (S. gardneri) strain ChNPU F3
and Streptomyces canus (S. canus) strain NUChC F2 isolated from soil that was in contact
with the corroding steel fence post (the ferrosphere) [53,54].



Eng. Proc. 2024, 67, 12 4 of 11

Streptomyces are sulfur-oxidizing bacteria and are able to oxidize sulfur compounds [18].
Streptomyces sp. possessing such properties were isolated from the concrete structures of
the bridge [55]. Bacteria produced H2SO4 and decreased culture pH up to 3.5. From the
authors’ point of view, this could cause the biodamage of construction materials. This
strain was used in the study to simulate the microbial corrosion of concrete samples (which
were then analyzed by FTIR) by biogenic sulfuric acid [56]. Wang et al. [57] showed that
organic acids produced by Streptomyces sp. accelerated the corrosion damage of steel in the
initial stages of MIC.

Streptomyces could be applied in the field of bioremediation as, in particular, they are
capable of biotransformation and biodegradation [15]. In particular, there are reports of the
utilization and transformation of Streptomyces sp. corrosion inhibitor benzimidazole as an
energy source for these, and bacterial growth (using SEM analysis) on the mild steel samples
coated with benzimidazole [58]. The authors emphasize the need to develop eco-friendly
approaches—“green” biocides or biocides based on micro-organisms, and their analogues,
which are incorporated into pre-existing benzimidazole to increase the level of corrosion
inhibition against corrosion biofilms in conditions under the influence of actinobacteria.

3.2. The Intensification of Corrosion in Mixed Corrosive Microbial Associations with
Strepomyces spp.

A decrease in the impedance value of A3 steel and an increase in the corrosion of
steel were detected if streptomycetes grew together with Nocardia sp. [59]. In mono and
associated bacterial systems (Thiobacillus ferrooxidans (T. ferrooxidans), Streptomyces, and
T. ferrooxidans + Streptomyces), corrosion characteristics of A3 steel were investigated using
electrochemical measurements and surface analysis. Serious damage to A3 steel was
established with the participation of streptomycetes [60]. However, the MIC of steel was
lower with the association of streptomycetes and T. ferrooxidans.

From an Indian crude oil reservoir, S. parvus strain B7 and Bacillus subtilis (B. subtilis)
strain A1 were isolated. These strains in monocultures and associations were investigated
as corrosion agents of carbon steel and stainless steel (API 5LX and 316, respectively) with
the presence of an eco-friendly corrosion biocide/inhibitor [41]. The authors noted severe
corrosion of both metals both by individual strains A1 and B7 and by association. It was
noted that the association had the highest corrosion activity among the tested variants
and S. parvus strain B7 showed higher corrosion activity than B. subtilis strain A1. The
researchers decided that the corrosion activity of the studied microorganisms was related
to the formation of biofilms (the presence of a “green” inhibitor inhibited this process) and
the influence on the electrochemical parameters of the corrosion process.

In general, the corrosive activity of streptomycetes in monocultures and as part of
associations is presented in Table 2.

Table 2. Corrosive activity of streptomycetes.

Cause of Corrosion Activity Species (Compound) Researched Construction
Material References

Powerful biofilm S. parvus strain B7 carbon steel, stainless steel [41]

Poor biofilm
S. lividans strains TK23.1 and TK24 SAE 1018 steel [44,45]

S. pilosus strain DSM40714 mild steel 37/AISI 10-18 [42]

Changes in electrochemical
parameters Streptomyces sp. steel A3 [60]

Production of corrosive
compounds

S. gardneri strain ChNPU F3,
S. canus strain NUChC F2 (ammonia) steel [53]

Streptomyces sp. (sulfuric acid) concrete [55,56]

Streptomyces sp. (organic acids) X65 steel [57]

Biodegradation of corrosion
inhibitors Streptomyces sp. benzimidazole-coated mild steel [58]
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4. The Prevention of Corrosion and Biofouling by Streptomyces spp.
4.1. Antimicrobial Metabolites of Streptomycetes in the Biocontrol of MIC

In recent years, the number of publications on “green” biocides/inhibitors, includ-
ing the prevention of MIC processes, has been rapidly increasing [2,4,5,61]. Among such
eco-friendly agents, considerable attention is paid to secondary metabolites synthesized by
heterotrophic bacteria [4,43,62–64]. Streptomycetes are known as producers of a number
of antimicrobial compounds [65]. Therefore, unique antibacterial metabolites of strepto-
mycetes (antibiotics, lipopeptides, exopolysaccharides, and siderophores) are proposed as
the agents of microbial control and prospective MIC inhibitors [48,57,66,67].

Thus, the ability to inhibit Zn corrosion in H2SO4 using albomycin synthesized by
Streptomyces griseus (S. griseus) was defined [62]. There is a report on the reduction in
corrosion losses of steel panels when using the strain Streptomyces sp. as a monoculture [24].
This strain was isolated from the Antarctic soil. A eumelanin polymer purified from S.
parvus strain BSB49 has anticorrosive properties on mild steel samples [25]. The known
classes of corrosion inhibitors, which are metabolites of various species of Streptomyces,
are as follows: tetracyclines, macrolides, lincosamides (lincomycin), and aminoglycosides
(streptomycin) [23].

It was found that Streptomyces lunalinharesii (S. lunalinharesii) strain 235 inhibits the
growth of Desulfovibrio alaskensis strain NCIMB 13491 and Bacillus pumilus strain LF-4,
which are participants in biofilm formation and the process of biocorrosion [68]. The
prevention of SRB biofilm formation by this strain is due to antimicrobial substances that
a strain forms [69]. It was noted that streptomycetes, producing a number of polysaccha-
rides and acetylated amino acids, are able to inhibit corrosion processes in the middle
stages (time) [57]. At the same time, the authors note the importance of the stability of
the film layer for the inhibition process and the importance of using the antimicrobial
metabolites of streptomycetes in MIC biocontrol. Polysaccharides belong to the group of
biosurfactants [70], which deserve attention as bioactive, anticorrosive, and antibiofilm
compounds [63,71]. Representatives of actinobacteria are known as producers of biosurfac-
tants [72] and therefore, their participation in microbial corrosion processes is important.

The researchers evaluated the ability to inhibit the corrosion of SAE 1018 steel by both
an intact non-viable biofilm (the cells of which were killed by the addition of kanamycin)
and metabolites of the non-biofilm-forming strain S. lividans TK 24. The ability of the
formed biofilm to inhibit corrosion under gentle agitation was also investigated [44].

Members of the genus Streptomyces are known to produce effective antifouling com-
pounds [73]. The most active strains and their antibiofouling substances were as follows:
Streptomyces fungicidicus (S. fungicidicus) (diketopiperazines) [74], Streptomyces albidoflavus
(S. albidoflavus) strain UST040711-291 (a group of simple butenolides) [75], and Streptomyces
filamentosus (S. filamentosus) strain R1 (according to the authors’ assumption, requinomycin
(antibiotic of the anthracycline group) [76]. Anticorrosive properties of the marine strain
Streptomyces sp. were shown under MIC conditions induced by sulfate-reducing bacteria on
X65 steel [77]. The researchers note that the strain grew by competing with SRB, reducing
the rate of electrochemical reactions, and its metabolites inhibited SRB biofilm formation,
which overall resulted in the inhibition of corrosion rates [77].

4.2. Nanoparticles and Streptomyces spp. as a Prospect of MIC Biocontrol

Today, researchers of corrosion processes give considerable attention to the use of
nanoparticles in inhibitory protection [66,78].

Agarwal et al. [79] investigated its use against bacterial biofouling and steel corrosion
(under salt water and acid conditions), using a combination of an extract of marine acti-
nobacteria Streptomyces sp. strain VITDSB and its mediated zirconium oxide nanoparticles.
The researchers recorded the highest effect against Bacillus thuringiensis and Pseudomonas
aeruginosa, as well as an increased anticorrosion effect under the influence of both salt water
and acid.
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There are reports of formation by streptomycetes of metal nanoparticles and metal
oxides nanoparticles [80–86]. The antimicrobial, antibiofilm/antibiofouling properties of
both metal nanoparticles and metal oxides are being actively researched [87–91], as well as
their inhibitory activity [66]. However, there are currently no studies on MIC processes in
the presence of nanoparticles synthesized by streptomycetes. Currently, some species of
bacteria, known as model organisms in MIC research processes, have shown sensitivity to
silver nanoparticles biosynthesized by Streptomyces naganishii (S. naganishii) strain MA7 [87].
In particular, the silver nanoparticles showed antimicrobial properties against Bacillus
cereus, Escherichia coli, Staphylococcus aureus, Proteus mirabilis, and Pseudomonas aeruginosa;
antifouling properties were noted against Aeromonas sp. strain P26, Aeromonas sp. strain
PP6, Alcaligenes sp. strain P47, Alcaligenes sp. strain PP8, Bacillus sp. strain P31, Bacillus sp.
strain P46, Micrococcus sp. strain P56, Micrococcus sp. strain PP5, Pseudomonas sp. strain P1,
and Staphylococcus sp. strain PP3 [87].

In general, the anticorrosion/antibiofouling activity of streptomycetes is presented
in Table 3. Thus, in the biodamage of structural materials, streptomycetes play a dual
role: either as corrosion enhancers or as corrosion inhibitors, which is determined by the
specifics of the physiology of a certain strain and species.

Table 3. Anticorrosion and antibiofouling activity of streptomycetes.

Protective Activity Species (Compound) Researched Construction
Material References

Anticorrosion and/or
antimicrobial/

antibiofouling compounds

S. griseus (albomycin) zinc [62]

Streptomyces sp. steel [24]

Streptomyces sp. (amino acids: phenylalanine,
proline; polysaccharides) X65 steel [57]

Streptomyces sp. X65 steel [77]

S. parvus strain BSB49 (eumelanin) mild steel [25]

S. fungicidicus (diketopiperazines) not used (methods without the
use of construction materials) [71]

S. albidoflavus strain UST040711-291 (a group of
simple butenolides) polyvinyl chloride [72]

S. filamentosus strain R1 (requinomycin) the glass slides [73]

Streptomyces sp. strain VITSDSB (the combination
of cultural extract and zirconium oxide

nanoparticles)
steel [74]

Streptomyces sp. (tetracyclines, macrolides,
lincosamides, aminoglycosides) not specified [23]

S. lunalinharesii strain 235 not used (methods without the
use of construction materials) [68,69]

S. naganishii strain MA7 (silver nanoparticles) not specified [87]

5. The Challenges and Potential Directions for Future Research

The involvement of streptomycetes in MIC processes has recently been actively stud-
ied. Streptomycetes are now known to either be corrosive agents in MIC or producers of
compounds with anticorrosion properties (“green” inhibitors) that act as biological control
compounds to protect materials from deterioration. The participation of streptomycetes
in MIC processes is related to both the corrosive metabolites they produce and bioelec-
trochemical mechanisms. Antibiotics, pigments, amino acids, polysaccharides, and oxide
nanoparticles produced by streptomycetes are important in terms of biodeterioration con-
trol approaches. Such compounds are eco-friendly and are considered promising “green”
corrosion biocides/inhibitors.

At the same time, despite the success in inhibiting MIC using micro-organisms in
laboratory conditions, such MIC inhibition methods have not achieved practical application
and success [51]. Usually, such studies are short term, carried out in controlled laboratory
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conditions (which differ from the conditions of material exploitation in the environment).
Also, biologically active compounds of micro-organisms can be involved in the circulation
of substances, which will reduce their effectiveness. The preservation of producer strains
requires considerable effort to prevent the loss of their biological activity. The process of
identifying and isolating a biologically active compound with the properties of a MIC bio-
cide/inhibitor appears to be expensive and labor-intensive. Therefore, the use of biological
controls in the prevention of MIC requires further in-depth studies on the mechanisms of
MIC, in particular regarding antagonistic interactions and the production of antimicrobial
compounds by participants in the corrosion process. The use of biological controls should
be considered as an eco-friendly alternative to chemical biocides/inhibitors for systems
where temperature and humidity conditions can be controlled and the anticorrosion agent
can be changed/added. In particular, this is useful for the prevention of biodeteriora-
tion in historical heritage sites [92]. Indeed, there are limitations to the practical use of
streptomycete secondary metabolites for MIC prevention, but such compounds belong to
the category of renewable resources and represent a completely new opportunity for the
circular economy, which determines the need for further in-depth research [93].

Future research in this field should be directed toward the study of secondary metabo-
lites and biosynthesized nanoparticles of metals and metal oxides with antimicrobial
activity as “green” microbial corrosion inhibitors, as these compounds have been shown to
have both antimicrobial and inhibitory properties. In addition, an important component
of future research should be the study of the influence of streptomycetes, as producers of
such compounds, on the structure of corrosion-active groups of micro-organisms. Thus, the
mechanisms of involvement of Streptomyces spp. in the processes of the biodeterioration of
some structural materials can be presented in the form of a general scheme (Figure 1).
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6. Conclusions

The results of research in the field of MIC and, in particular, the participation of
streptomycetes in the corrosion process and the possible mechanisms of their involvement
were summarized in the presented study. It was shown that representatives of the genus
Streptomyces can affect the process of biodamage to structural materials in the following
ways: 1. by biofilm formation; 2. by influencing the electrochemical characteristics of the
corrosion process; 3. by participating in the biodegradation of corrosion inhibitors; and 4. by
the production of anticorrosive/antimicrobial and/or corrosion-hazardous substances. At
the same time, the mechanisms of streptomycetes’ involvement in the processes of microbial
damage to metals and their consequences (intensification or weakening of corrosion)
are ambiguous and are determined by the peculiarities of the physiology of the studied
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species or strains and the presence of micro-organisms of other species. Further studies
on streptomycetes as participants in the corrosion process with special attention to their
production of secondary metabolites and nanoparticles with antimicrobial and inhibitory
properties are necessary, which will contribute to the expansion of the list of “green”
biocides/inhibitors.
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